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1 Introduction

In [HL13], Hopkins and Lurie proved that certain limits and colimits in SpK(n) agree.

Theorem 1.1 ([HL13]). Let A be an anima that ism-truncated for some integerm ⩾ −2 with
finitely many connected components and finite homotopy groups. Then for anyF : A→ SpK(n),

there is a canonical equivalence

NmA : colim
A

F
≃−→ lim

A
F ∈ SpK(n) .

In this situation, we say that SpK(n) is∞-semiadditive (Definition 2.7).

The purpose of this survey is to give a direct proof to the main theorem of [CSY22], which

is an analog of Hopkins-Lurie’s theorem in SpT (n).

Theorem 1.2 ([CSY22, Theorem A]). The∞-category SpT (n) is∞-semiadditive.

In the proof of the theorem, we will also show that SpK(n) and ModEn(SpK(n)) are ∞-

semiadditive, which recovers the previous result by Hopkins-Lurie.

The original paper sets up a general machinery to solve the ambidexterity problems. In this

survey, we want to depict the core of the proof and prove Theorem 1.2 more directly. Hence,

the content of this survey is almost a subset of the original paper, extracting essential details

without any diagram chasing and keeping specific to be intuitive.

2 Local systems and ambidexterity

In this section, we set up some fundamental concepts and tools used later in the proof of Theo-

rem 1.2. As noticed in the introduction, in order to make the context more intuitive, we restrict

ourselves to the case of local systems, which are∞-categories of the form Fun(A, C) for some

A ∈ An and∞-category C.

2.1 π-finite anima and the norm map

The proof is based on a previous result by Kuhn.

Theorem 2.1 ([Kuh04]). The∞-category SpT (n) is 1-semiadditive.
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We want to prove the∞-semiadditivity of SpT (n) by induction. To do this, we first make

precise what the index means here. The definition itself is also inductive.

Definition 2.2. Suppose A ∈ An. We say that A is

1. (−2)-finite if A is contractible.

2. m-finite for some integer m ⩾ −1 if π0(A) is finite and all fibers of the diagonal map

∆A : A → A × A are (m − 1)-finite (for m ⩾ 0, this is equivalent to say that A has

finitely many connected components, and each of them ism-truncated with finite homo-

topy groups).

3. π-finite if A ism-finite for somem ⩾ −2.

In [HL13], Hopkins and Lurie showed that colimits and limits in SpK(n) indexed by a π-

finite anima A are canonically isomorphic. In fact, we can generalize this isomorphism to

colimits and limits indexed by fibers of a map between anima.

Definition 2.3. Suppose q : A → B is a morphism in An and m ⩾ −2 is an integer. We say

that q is m-finite (resp. π-finite) if q−1(b) is m-finite (resp. π-finite) for each b ∈ B, where

q−1(b) is the (homotopy) fiber of q over b.

Definition 2.4. Suppose q : A → B is a morphism in An and C is an ∞-category. We say C

admits all q-(co)limit if C admits all colimits indexed by q−1(b) for all b ∈ B.

We say C admits all m-finite (co)limit if C admits all q-(co)limit for allm-finite map q.

Similarly, we can define the notion that F : C → D preserves all q-(co)limits or m-finite

(co)limits.

Note that if B = pt, then q-(co)limit is the same with a (co)limit indexed by A.

Construction 2.5. Given a morphism between anima q : A→ B and an∞-category C, we have

the following functors.

Fun(B, C) Fun(A, C)q∗

q!

q∗

where q∗ is given by composing with q, and q! and q∗ are given by left and right Kan extensions

respectively. We will denote the counit and unit map of the adjunction q∗ a q∗ by c∗ and u∗

respectively in the rest of the survey. Similar for the adjunction q! a q∗.
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Suppose δ : A→ A×B A is the diagonal of q and there is an natural isomorphism

Nmδ : δ!
≃→ δ∗.

We have a wrong way unit map µδ : Id
uδ→ δ∗δ

∗ Nm−1
δ−→ δ!δ

∗ and the following commutative

diagram.

A

A×B A A

A B

δ

π1

π2 q

q

Composing the base-change map for the square above and µδ, we get a wrong way counit map

for q by

νq : q
∗q! ' (π2)!π

∗
1

µδ→ (π2)!δ!δ
∗π∗

1 ' Id .

Let

Nmq : q! → q∗

be the mate of νq constructed above under the adjunction q∗ a q∗.

To sum up, we get a norm map on q from the isomorphic norm map on δ. We will use this

construction to define ambidexterity and the norm map inductively.

By definition, if q ism-finite, then δ is (m− 1)-finite.

Definition 2.6. Let C be an∞-category,m ⩾ −2 be an integer and q : A→ B is a map in An.

We say q is

1. weaklym-C-ambidextrous, if q ism-finite, C admits all q-(co)limits and either of the two

holds:

• m = −2, in which case the inverse of q∗ is both a left and right adjoint of q∗. In

this case, we define the norm map Nmq : q! → q∗ on q to be the identity of some

inverse of q∗.

• m ⩾ −1 and the diagonal δ of q is (m − 1)-ambidextrous. In this case, we de-

fine the norm map Nmq : q! → q∗ on q to be the map constructed above from the

isomorphism Nmδ : δ! → δ∗.
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2. m-C-ambidextrous, if q is weakly m-C-ambidextrous and the norm map on q is an iso-

morphism.

Note that if q is m-C-ambidextrous for some m. Then q is n-C-ambidextrous for all

n ⩾ m. Therefore, we will omitm and introduce the following definition.

3. (weakly) C-ambidextrous, if q is (weakly)m-C-ambidextrous for somem ⩾ −2.

If B = pt, then we will say A is (weakly) C-ambidextrous if q is and denote Nmq by NmA.

The following is a central notion of this survey.

Definition 2.7. Let m ⩾ −2 be an integer. An ∞-category C is called m-semiadditive, if C

admits all m-finite (co)limits and every m-finite map of anima is C-ambidextrous. It is called

∞-semiadditive if C ism-semiadditive for all integersm ⩾ −2.

Example 2.8. 1. Every∞-category C is (−2)-semiadditive since the only equivalence class

of (−2)-finite anima is a point.

2. Since the only (−1)-finite anima is the empty set, C is (−1)-semiadditive if and only if

the unique map from the initial object to the final object is an isomorphism, if and only

if C is pointed.

3. Since 0-finite anima are finite sets, C is 0-semiadditive if and only if the canonical maps

from finite coproducts to finite products are canonically isomorphic, if and only if C is

semiadditive in the usual sense.

4. Let A := BG for some finite group G be a 1-finite anima. It can be shown that the norm

map NmA : XhG → XhG is the classical norm of G. Thus, NmA is an isomorphism if

and only if the Tate construction vanishes.

2.2 Integration and amenability

Throughout this subsection, let C be an∞-category and q : A→ B be a C-ambidextrous map.

If B is a point and we have a family of maps φ : A → Map(X,Y ) for some X,Y ∈ C '

Fun(B, C), then we have the following composition of maps

X
∆→ lim

A
X

limA ϕ−→ lim
A

Y
Nm−1

A−→ colim
A

Y
∇→ Y.
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summing up φ over A. If A is a finite set, then this composition reduces to the usual addition of

maps in a semiadditive category as illustrated in Example 2.8(3). In particular, if X = Y and

φ is a constant diagram on IdX , then the sum is the cardinality of A. The definition below is a

generalization of this situation to arbitrary B, i.e., a twisted sum of maps via ambidexterity.

Definition 2.9. For every X,Y ∈ Fun(B, C), the integral map

∫
q

: Map(q∗X, q∗Y )→ Map(X,Y ),

is defined as the composition

Map(q∗X, q∗Y )
q∗→ Map(q∗q

∗X, q∗q
∗Y )

Nm−1
q−→ Map(q∗q

∗X, q!q
∗Y )

c!◦−◦u∗−→ Map(X,Y ).

Definition 2.10. For every X ∈ Fun(B, C), we define the cardinality of q on X to be the map

|q|X :=

∫
q

q∗ IdX =

∫
q

Idq∗X : X → X.

Note that |q| is a natural transformation of IdC .

Notation. If B = pt, then we will write
∫
A
and |A| for

∫
q
and |q| respectively.

The integral map enjoys the following important and intuitive properties. The proofs are

just diagram-chasing.

Proposition 2.11 (Homogeneity, [CSY22, Proposition 2.1.14]). Let X,Y, Z ∈ Fun(B, C).

1. For any f ∈ Map(q∗X, q∗Y ) and g ∈ Map(Y, Z), we have

g ◦
(∫

q

f

)
'

∫
q

(q∗g ◦ f).

2. For any f ∈ Map(X,Y ) and g ∈ Map(q∗Y, q∗Z), we have

(∫
q

g

)
◦ f '

∫
q

(g ◦ q∗f).

Proposition 2.12 (Higher Fubini’s Theorem, [CSY22, Proposition 2.1.15]). Suppose q : A →

B and p : B → C are C-ambidextrous maps. For all X,Y ∈ Fun(C, C) and all morphism
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f : q∗p∗X → q∗p∗Y , we have ∫
p

(∫
q

f
)
=

∫
pq

f.

Proposition 2.13 ([CSY22, Proposition 2.2.12, Lemma 3.1.2 and Corollary 3.2.7]).

1. Let

Ã A

B̃ B

sA

q̃ q

sB

be a pullback square in An. If q and q̃ are both C-ambidextrous, then for all X,Y ∈

Fun(B, C) and f ∈ Map(q∗X, q∗Y ), we have

s∗B

(∫
q

f

)
'

∫
q̃

s∗Af.

In particular, s∗B(|q|X) ' |q̃|s∗AX .

2. Suppose q is an m-finite map and C and D are m-semiadditive∞-categories. Suppose

F : C → D is a functor that preserves all m-colimits. For all X,Y ∈ Fun(B, C) and

f ∈ Map(q∗X, q∗Y ), we have

F

(∫
q

f

)
'

∫
q

F (f).

In particular, we have F (|q|X) ' |q|F (X).

As mentioned before, we aim to prove the∞-semiadditivity inductively. Suppose we have

proven that SpT (n) ism-semiadditive for somem ⩾ 1. Pick any (m+ 1)-finite anima A. Note

that A is (m + 1)-finite if and only if ΩA is m-finite. Let ΩA → ∗ → A be the path fibration

over A. Heuristically, if we can show that ΩA is kind of “invertible”, then we may pass the

ambidexterity of ∗ to A. A canonical choice for the definition of the invertibility in the context

of ambidexterity should be nothing but the invertibility of the cardinality.

Definition 2.14.We say q is C-amenable if |q| is a natural isomorphism.

If B = pt, then we will say A is amenable if q is.

The following theorem extends the fact in the representation theory of finite groups that

every vector space is a retract of the induced representation via “averaging” overG if |G| is not

divisible by the characteristic of the base field.
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Theorem 2.15. If q is amenable, then for any X ∈ Fun(B, C), the counit map c! : q!q∗X → X

admits a section. In particular, every object inFun(B, C) is a retract of an object in the essential

image of q!.

Proof. For anyX ∈ C, the composition q∗X u!→ q∗q!q
∗X

q∗c!→ q∗X is homotopic to Idq∗X by the

triangle identity. By definition and Proposition 2.11(1), we have

|q|X =

∫
q

Idq∗X '
∫
q

(q∗c! ◦ u!) ' c! ◦
∫
q

u!.

Therefore, (
∫
q
u!) ◦ |q|−1

X is a section of c!.

Lemma 2.16. Let A → E
p→ B be a fiber sequence of weakly C-ambidextrous anima, where

B is connected. If E is C-ambidextrous and A is C-amenable, then B is C-ambidextrous.

Proof. We first show that p is amenable. Then we use Theorem 2.15 to finish the proof.

Since A is C-ambidextrous, p is C-ambidextrous by [HL13, Proposition 4.3.5(1)]. Let

i : pt→ B be a base-point. By Proposition 2.13(1), i∗(|p|X) ' |A|i∗X for all X ∈ Fun(B, C).

SinceB is connected, i∗ is conservative. Thus, the amenability of p follows from the amenabil-

ity of A.

Let qB : B → pt be the terminal map. Since E is C-ambidextrous, qBp is C-ambidextrous

by definition. The norm map can be shown to be functorial for composition, i.e.,

NmqBp ' ((qB)∗ Nmp) ◦ (NmqB p!) : (qB)!p! → (qB)∗p! → (qB)∗p∗.

Thus, NmqB is an isomorphism on the essential image of p!. By Theorem 2.15, Nmp is an

isomorphism for all X ∈ C since isomorphisms are closed under retracts.

2.3 Monoidal structures

In this subsection, let (C,⊗,1C) be a monoidal ∞-category. Let q : A → B be a weakly C-

ambidextrous map such that C admits all q-colimits and q-limits, and the tensor product dis-

tributes over all q-colimits. Thus, q∗ : Fun(B, C)→ Fun(A, C) is monoidal in a canonical way

([Lur17, Example 3.2.4.4]), so q! is colax monoidal by the dual of [Lur17, Corollary 7.3.2.7].

Proposition 2.17 ([CSY22, Proposition 3.3.1]). For any X ∈ Fun(B, C) and Y ∈ Fun(A, C),
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the compositions of canonical maps

q!(Y ⊗ (q∗X))→ (q!Y )⊗ (q!q
∗X)

Id⊗c!−→ (q!Y )⊗X

q!((q
∗X)⊗ Y )→ (q!q

∗X)⊗ (q!Y )
c!⊗Id−→ X ⊗ (q!Y )

are both naturally isomorphisms. In particular, q!q∗X ' X ⊗ (q!q
∗ 1Fun(B,C)) naturally.

The above projection formulas suggest that in order to check the ambidexterity at of q in C,

it suffices to check it at the tensor unit. To be precise, we have the following proposition.

Proposition 2.18 ([CSY22, Proposition 2.3.4]). The map q is C-ambidextrous if and only if

Nmq is an isomorphism at q∗ 1Fun(B,C).

Now let (D,⊗,1D) be another monoidal∞-category that admits all q-colimits and q-limits,

and the tensor product distributes over all q-colimits. Let F : C → D be a monoidal functor.

Note that

q∗ 1Fun(B,D) ' q∗F 1Fun(B,C) ' Fq∗ 1Fun(B,C)

by the monoidality of F and the commutativity of q∗ and F . Hence, we have the following

composition of maps

q!q
∗ 1Fun(B,D)

≃−→q!Fq∗ 1Fun(B,C)
β!−→ Fq!q

∗ 1Fun(B,C)

Nmq−−→Fq∗q
∗ 1Fun(B,C)

β∗−→ q∗Fq∗ 1Fun(B,C)
≃−→ q∗q

∗ 1Fun(B,D),

where β! and β∗ are the Beck-Chevalley maps. This map may not be the same with Nmq

on q∗ 1Fun(B,D), but actually it is at most time (this motivates the definition of the weakly-

ambidextrous squares in [CSY22, Definition 2.2.9]). If F preserves all q-colimits and q-limits,

then the Beck-Chevalley maps are isomorphisms by the point-wise formulas of Kan extensions.

Therefore, we can transmit ambidexterity of q in C to the ambidexterity of q in D through such

a functor F .

Lemma 2.19 ([CSY22, Corollary 3.3.2]). Suppose F : C → D is anm-finite colimit preserving

monoidal functor between monoidal categories that admit, and the tensor products distribute

over, m-finite colimits.

1. If q : A → B is an m-finite, C-ambidextrous and weakly D-ambidextrous, then q is D-

ambidextrous.
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2. If C is m-semiadditive, then D is m-semiadditive.

The following definition is a natural notion of (symmetric) monoidal structures for m-

semiadditive categories.

Definition 2.20. Suppose (C,⊗,1C) is an m-semiadditive (symmetric) monoidal∞-category.

We say C ism-semiadditively (symmetric) monoidal if ⊗ distributes overm-finite colimits.

Lemma 2.21. Suppose C is m-semiadditively monoidal and A is an m-finite anima.

1. For any X ∈ C, |A|X ' IdX ⊗|A|1C .

2. The anima A is C-amenable if and only if |A|1C is an isomorphism.

Proof. It is clear that (2) follows from (1).

For any X ∈ C, X ⊗− : C → C preserves all colimits. Thus, we have

|A|X ' |A|X⊗1C ' IdX ⊗|A|1C

by Proposition 2.13(2).

Notation. For an m-semiadditively symmetric monoidal ∞-category (C,⊗,1C) and an m-

finite space A, we will simply denote |A|1C by |A|. If we want to emphasize the category C, we

will write |A|C .

3 Ambidexterity in chromatic homotopy theory

3.1 Recollection of chromatic homotopy theory

3.1.1 Localizations

In this subsection we recall some notions in chromatic homotopy theory. The results are stan-

dard, sowe suggest the readers to find the proof in the reference. Let (Sp,⊗, S) be the symmetric

monoidal∞-category of spectra.

Recall from [Lur09, Section 5.2.7] that a functor L : Sp → Sp is called a localization

functor if it factors as a composition Sp → SpL → Sp, where the second functor is fully

faithful and the first is its left adjoint. We abuse notation and denote by L also the left adjoint

Sp→ SpL itself. We call a map f in Sp an L-equivalence, if L(f) is an isomorphism.
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Definition 3.1. A localization functorL : Sp→ Sp is called a⊗-localization if L is compatible

with the symmetric monoidal structure. That is to say, L-equivalences are closed under tensor

product with all objects of C, See [Lur17, Definition 2.2.1.6, Example 2.2.1.7].

Proposition 3.2 ([CSY22, Proposition 5.1.2]). For every ⊗-localization L : Sp→ Sp, the∞-

category SpL is stable, presentable and admits a structure of a presentably symmetric monoidal

∞-category (Sp, ⊗̂, LS) such that the functorL : Sp→ SpL is symmetric monoidal. Moreover,

the inclusion SpL ↪→ Sp admits a canonical lax symmetric monoidal structure. Finally, for all

X,Y ∈ SpL we have

X⊗̂Y ' L(X ⊗ Y ).

For every spectrum E ∈ Sp, we denote by LE : Sp→ Sp the ⊗-localization with essential

image the E-local spectra. We denote SpLE
by SpE and LE(S) by SE . For a prime p, we shall

consider also ⊗-localizations L : Sp(p) → Sp(p). The analogous results and notation apply to

the p-local case as well.

Proposition 3.3 ([CSY22, Proposition 5.1.3]). Let E ∈ Sp and let R be an E-local E1-ring.

The∞-categoryMod
(E)
R of left modules overR in the symmetric monoidal∞-category SpE , is

presentable and admits a structure of a presentably symmetric monoidal∞-category. Moreover,

we have a free-forgetful adjunction

FR : SpE ⇌ Mod
(E)
R : UR,

in which FR is symmetric monoidal.

3.1.2 Morava theories and telescopic localizations

Given an integer n ≥ 0, let En be a 2-periodic Morava E-theory of height n with coefficients

(for n ≥ 1)

π∗En ' Zp[[u1, . . . , un−1]][u
±1], |ui| = 0, |u| = 2,

and let K(n) be a 2-periodic Morava K-theory of height n with coefficients (for n ≥ 1)

π∗K(n) ' Fp[u
±1], |u| = 2.

The spectrum En admits an E∞-ring structure in SpK(n) (by [Lur18]). We shall use the

notation M̂odEn forMod
(K(n))
En

.
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Definition 3.4. A finite p-local spectrum X , i.e. a compact object in the∞-category Sp(p), is

said to be of type n, if K(n)⊗X 6= 0 andK(j)⊗X = 0 for j = 0, 1, . . . , n− 1.

Every type n spectrum F (n) admits a vn-self map, which is a map

v : ΣkF (n)→ F (n),

that is an isomorphism onK(n)∗X and zero onK(j)∗X for j 6= n. We choose F (n) an E1-ring

spectrum of type n (say, Hom(F ′(n), F ′(n)) for a finite p-local spectrum F ′(n) of type n) and

let

T (n) = v−1F (n) = lim−→
k

(
F (n)

v−→ Σ−kF (n)
v−→ Σ−2kF (n)

v−→ . . .
)

be the telescope on v. The canonical map F (n)→ T (n) exhibits T (n) as the T (n)-localization

of F (n). Since the functor LT (n) is symmetric monoidal, we can consider T (n) = LT (n)F (n)

as an E1-ring in SpT (n). By the Thick Subcategory and Periodicity theorems, the localization

SpT (n) depends only on the prime p and the height n and in particular is independent of the

choice of F (n) and v. It is known that

SpK(n) ⊆ SpT (n) ⊆ Sp .

(In fact, due to the latest paper [BHLS23] disproving the telescope conjecture, all inclusions

above are strict. )

Thus, both En and K(n) are also T (n)-local, and so we can consider them as an E∞-ring

and an E1-ring in SpT (n) respectively.

Morava K-theories are used in the following definition of support:

Definition 3.5. Let L : Sp(p) → Sp(p) be a ⊗-localization functor. The (chromatic) support of

L is the set

supp(L) = {0 ≤ n ≤ ∞ | L(K(n)) 6= 0} ⊆ N ∪ {∞}.

For E ∈ Sp(p) we denote supp(E) = supp(LE).

Using the above definition, we can state the Nilpotence theorem by Devinatz-Hopkins-

Smith. For convenience, we introduce a notion of ”ring” spectrum:

Definition 3.6. A weak ring is a spectrum R ∈ Sp, together with a ”unit” map u : S→ R and
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a ”multiplication” map R⊗R→ R, such that the composition

R
u⊗Id−−−→ R⊗R

µ−→ R,

is homotopic to the identity. Note that being weak ring is closed under tensor products.

Now we are ready to state the theorem:

Theorem 3.7 (Devinatz-Hopkins-Smith). Let R be a p-local weak ring. Then R = 0 if and

only if supp(R) = ∅.

The following argument illustrates how to deduce this form from the standard version.

Proof. Consider the unit map u : S → R. If K(n) ⊗ R = 0 for all 0 6= n 6= ∞, then by

[HS98, Theorem 3(iii)], the map u is smash nilpotent. Namely, u⊗r : S→ R⊗r is null for some

r ≥ 1. The commutative diagram

S⊗ S R⊗R

S⊗R R

u⊗u

Id⊗u µ
u⊗Id

Id

shows that u factors through u⊗ u. Applying this iteratively, we can factor u through the null

map u⊗r and deduce that u itself is null. Consequently, the factorization of the identity map of

R as the composition

R
u⊗Id−−−→ R⊗R

µ−→ R,

implies that it is null and thus R = 0.

There are corollaries to the Nilpotence theorem that can be used later for proving the higher

semiadditivity of SpT (n). We start with a definition.

Definition 3.8.We call a monoidal colimit preserving functor F : C → D, between stable

presentablymonoidal∞-categories nil-conservative, if for every ringR ∈ Alg(C), ifF (R) = 0

then R = 0.

The point of nil-conservativity is that, it gives a criterion of ring homomorphisms that detect

invertible elements. We will see it in the next subsection. The Nilpotence Theorem gives us the

main example of a nil-conservative functor (See [CSY22, Proposition 5.1.15]):
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Proposition 3.9. Let R be a p-local weak ring. The functor

L : SpR →
∏

n∈supp(R)

SpK(n),

defined by K(n)-localizing at the n-th component, is nil-conservative.

Proof. Suppose S ∈ SpR. If L(S) = 0, then S ⊗K(n) = 0 for all n ∈ supp(R). Meanwhile,

R ⊗ K(n) = 0 for all n /∈ supp(R) by definition. Therefore, S ⊗ R ⊗ K(n) = 0 for all

n ∈ N ∪ {∞}. Since weak rings are closed under tensor product, S ⊗ R = 0 by Theorem 3.7,

implying that S = 0 in SpR.

Corollary 3.10. For every 0 ≤ n ≤ ∞, the functor

Ên[−] : SpT (n) → M̂odEn

given by the composition

SpT (n)

LK(n)−−−→ SpK(n)

FEn−−→ M̂odEn

is nil-conservative, where the first functor isK(n)-localization and the second is the free functor.

Proof. By Proposition 3.9 and the fact that supp(T (n)) = {n} ([Rav87, Proposition A.2.13]),

LK(n) is nil-conservative. It is also clear that FEn(−) ' En⊗̂− : SpK(n) → M̂odEn is nil-

conservative. Therefore, their composition is nil-conservative.

3.2 Interlude : reduction of the problem

One of our main goals is proving the ∞-semiadditivity of C = SpT (n). Let us assume by

induction that SpT (n) is m-semiadditive. To show SpT (n) is (m + 1)-semiadditive, we need

to prove that for any (m + 1)-finite map q of anima, q is SpT (n)-ambidextrous. By [HL13,

Proposition 4.4.16], it suffices to show that

1. Bm+1Cp is SpT (n)-ambidextrous.

To show this, we hope to apply Lemma 2.16, which in turn requires a fiber sequence

A→ E → B

14



of anima, where A and E are bothm-finite and A is moreover SpT (n)-amenable.

We first make an ad hoc definition:

Definition 3.11.We call an anima A m-good if it is connected, m-finite with πm(A) 6= 0, and

all homotopy groups of A are finite p-groups.

The reason we call such kind of anima ”good” is that they are good candidates for such a

fiber sequence indicated above:

Lemma 3.12. If A be an m-good anima, then A is nilpotent. Consequently, A fits into a fiber

sequence

A→ E → B

where E is m-finite and B = Bm+1Cp.

Proof. By [MP12, Theorem 3.2.2], every connected nilpotent space admits a principal refine-

ment of its Postnikov tower. In the case that A is m-good, it means that there is a principal

fibration BmH → A → E, where H is a subgroup of πm(A) such that π1(A) acts trivially

on H . Since H must be a p-group as a subgroup of πm(A), we may shrink it and assume that

H ∼= Cp. Therefore, we get the desired fiber sequence.

We now show that A is nilpotent. Since every p-group is nilpotent, π1(A) is a nilpotent

group. It remains to show that the action of a p-group G on an abelian p-group A is nilpotent.

Note that A admits a filtration A > pA > p2A > · · · > 0, where each pnA is a G-

group since G acts on A by group homomorphisms. For each n > 0, the G-equivariant map

A/pA→ pnA/pn+1A induced by multiplication by pn is always surjective. Thus, it remains to

show that G acts on A/pA nilpotently, i.e., we reduce to the case that A is a Fp-vector space.

Suppose A ∼= Fd
p by choosing a basis for A. Then the G-action gives us a group homomor-

phism ρ : G → GLd(Fp). Since G is a p-group, im(ρ) is a p-subgroup in GLd(Fp). It can be

shown that

|GLd(Fp)| =
d−1∏
i=0

(pd − pi) = p
d(d−1)

2

d−1∏
i=0

(pd−i − 1).

Let U be the subgroup of upper-triangular unipotent matrices in GLd(Fp). Then |U | = p
d(d−1)

2 .

Thus, U is a Sylow p-subgroup of GLd(Fp). By Sylow’s theorem, im(ρ) is a subgroup of

some conjugate of U . By changing a basis for A, we may assume that im(ρ) < U . Suppose

{e1, · · · , ed} is the basis for A. Then A > Fpe2 ⊕ · · · ⊕ Fped > · · · > Fpen > 0 is a filtration

of A such that G acts trivially on the associated grading.

15



Since SpT (n) is m-semiadditive by assumption, according to Lemma 2.21, we are reduced

to showing that ([CSY22, Lemma 4.3.6])

2. There exists anm-good anima A, such that |A|1C ∈ HomC(1, 1) is an isomorphism.

For anym-finite animaA andm-semiadditively symmetric monoidal∞-category (C,⊗,1),

the cardinality |A|1 is an endomorphism on the unit 1. The following definition allow us to

regard HomC(1,1) as the commutative ring π0ST (n), so that we may apply theories developed

on commutative rings:

Definition 3.13. Let C be a symmetric monoidal∞-category. We denote

RC = HomhC(1,1)

as a commutative monoid. If C is 0-semiadditive, thenRC is naturally a commutative rig(a ring

without additive inverse) and if C is stable, then it is a commutative ring. Given a symmetric

monoidal functor F : C → D, the induced map ϕ : RC → RD is a monoid homomorphism. It

is also a rig (resp. ring) homomorphism, when C andD are 0-semiadditive (resp. stable) and F

is a 0-semiadditive functor.

Thus, we are reduced to showing that

2’. There exists anm-good anima A, such that |A|1C ∈ π0ST (n) is an invertible element.

Recall the notion of nil-conservativity from Definition 3.8. By [CSY22, Proposition 4.4.4],

nil-conservative functors are conservative on the full subcategories of right dualizable objects.

In particular, we have

Proposition 3.14. Let F : C → D be a nil-conservative functor. The induced ring homomor-

phism ϕ : RC → RD detects invertibility. Namely, for any element r ∈ RC = HomhC(1, 1), r

is invertible if so is ϕ(r) ∈ RD.

Combining with Corollary 3.10, we are allowed to transport 2’ into

3. There exists anm-good anima A, such that |A| ∈ π0En is invertible.

Remark 3.15. Note that the functor Ên[−] : SpT (n) → M̂odEn satisfies all conditions in

Lemma 2.19. Now, under the assumption that SpT (n) is m-semiadditive, we also have the

m-semiadditivity of M̂odEn , and thus |A| is well defined.
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Recall that En has known homotopy group:

π0En ' Zp[[u1, . . . , un−1]],

and is way better understood than ST (n). Moreover, according to [BG16, Lemma 1.33], The

image of h : π0ST (n) → π0En is contained in Zp ⊂ Zp[[u1, . . . , un−1]] = π0En. In this case,

|A| ∈ π0En is invertible if and only if the p-adic valuation vp(|A|) is zero.

Now we are reduced to the problem

4. There exists anm-good anima A, such that vp(|A|) is zero.

4 Stable additive derivations

4.1 Equivariant power

Let C be a symmetric monoidal∞-category and p a prime. In this subsection, we construct a

functor Θp : C → Fun(BCp, C), which is additive in the sense that it admits a formula of the

form

Θp(f + g) = Θp(f) + Θp(g) + ”induced terms”,

under the assumption that C is 0-semiadditive.

Definition 4.1. LetX ∈ C be an object in a symmetric monoidal∞-category, the tensor power

X⊗p admits a natural action of the cyclic groupCp ⊆ Σp (by permuting factors). When C = An

is the cartesian symmetric monoidal∞-category of anima, we denote the above homotopy orbit

by X o Cp = (Xp)hCp .

Lemma 4.2. The functor (−) o Cp : An→ An preserves fiber products.

Proof. See [CSY22, Lemma 3.4.1].

The construction (−) o Cp induces a functor

(−)phCp
: Fun(A, C)→ Fun((Ap)hCp , (Cp)hCp).

Using this have the following:

17



Definition 4.3. Given a symmetric monoidal∞-category C, we define the functor

Θp
A : Fun(A, C)→ Fun(A o Cp, C)

to be the composition (−)phCp
with

(Cp)hCp → (Cp)hΣp

⊗−→ C.

When the context is clear, we will suppress the subscript A.

The first core feature of this functor is that it commutes with integrals ([CSY22, Theorem

3.4.8]):

Theorem 4.4. Let C be an m-semiadditively symmetric monoidal∞-category and q : A→ B

an m-finite map of spaces. For every X,Y ∈ Fun(B, C) and f : q∗X → q∗Y , we have

Θp
B

(∫
q

f
)
=

∫
q≀Cp

Θp
A(f) ∈ HomhFun(B≀Cp,C)(Θ

p(X),Θp(Y )).

Remark 4.5. The above equation requires a specification of the ”ambidextrous” square given

by the naturality of Θp:

Fun(A, C) Fun(A o Cp, C)

Fun(B, C) Fun(B o Cp, C)

Θp
A

q∗ (q≀Cp)∗

Θp
B

.

(See [CSY22, Definition 2.2.9, Proposition 2.2.12] for the definition and properties of ambidex-

trous squares.)

To study the additivity of Θ, we confine ourselves to the case

q : ptt pt→ pt .

Let f, g : X → Y be twomaps in C, such that the pair (f, g) can be identified with amap q∗X →

q∗Y in Fun(ptt pt, C) and thus the left-hand side of the equation appeared in Theorem 4.4 can
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be identified with Θp
pt(f + g). So our goal for now is to describe the commutative diagram

Fun(pt, C) Fun(pt oCp, C)

Fun(ptt pt, C) Fun((ptt pt) o Cp, C)

Θp
pt

q∗ (q≀Cp)∗

Θp
pt⊔ pt

explicitly and thus to unwind the right hand-side

∫
q≀Cp

Θp
pt⊔ pt(f, g) ∈ HomFun((pt⊔ pt)≀Cp,C)(Θ

p(X),Θp(Y )).

Let S be the set

S = {w ∈ {x, y}p|w 6= xp, yp},

with x, y formal variables and let S̄ be the set of orbits of S under the action of Cp by cyclic

shift. We have an equivalence of anima

(ptt pt) o Cp ' BCp t BCp t S̄,

and therefore an equivalence of∞-categories

Fun((ptt pt) o Cp, C) ' CBCp × CBCp ×
∏
w̄∈S̄

C.

Choosing a base point map e : pt→ BCp, we see that up to homotopy, we have

q o Cp = (Id, Id, e, . . . , e).

Similiarly, under the above identification, the functorΘp
pt⊔ pt can also be identified with a func-

tor

Φ : C × C → CBCp × CBCp ×
∏
w̄∈S̄

C,

which can be described as follows:

For each element w = (w1, w2, . . . , wp) ∈ {x, y}p, we define a functor w(−,−) : C × C →

C, which, informally speaking, is given by
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w(X,Y ) = Z1 ⊗ Z2 ⊗ · · · ⊗ Zp, Zi =

X if wi = x

Y if wi = y

.

Then we have

Lemma 4.6 ([CSY22, Lemma 3.4.9]). The functor Φ is naturally equivalent to

(Θp ◦ p1,Θp ◦ p2, {w(−,−)}w̄∈S̄),

where pi : C × C denotes the projection to the i-th component(it does not matter which repre-

sentative w we take for w̄ ∈ S̄).

Using this, we may compute

Θp(f + g) = Θp(

∫
q

(f, g)) =

∫
q≀Cp

Θp
pt⊔ pt(f, g)

=

∫
(Id,Id,e,...,e)

(
Θp(f),Θp(g), {w(f, g)}w̄∈S̄

)
= Θp(f) + Θp(g) +

∑
w̄∈S̄

( ∫
e

{w(f, g)}
)
.

This gives the desired formula([CSY22, Proposition 3.4.10]).

4.2 Additive p-derivation in number theory

The functorΘp described in the last subsection can be used to define an operation αwhich helps

us to reduce the p-adic valuation of the cardinality for an m-good anima. Finally, we will find

anm-good anima A whose cardinality |A| lies in Z×
p ⊂ Zp[[u1, . . . , un−1]] ' π0(En).

Let’s start with the Fermat quotient in number theory:

Example 4.7. Let R be a subring of Q (or Qp). Then the expression

δ̄(x) =
x− xp

p

satisfies

1. δ(x+ y) = δ(x) + δ(y) + xp+yp−(x+y)p

p
for all x, y ∈ R.

2. δ(0) = δ(1) = 0.
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3. vp(δ̄(x)) = vp(
x−xp

p
) = vp(x)− 1 for every such x that 0 < vp(x) <∞, where vp : R→

Z ∪ {∞} is the p-adic valuation.

We treat the Fermat quotient as a prototype of an additive p-derivation, that is to say, an

operation satisfying condition 1 and 2 as in Example 4.7.

Definition 4.8. Let R be a commutative ring. An additive p-derivation on R is a function of

sets

δ : R→ R,

that satisfies :

1. (additivity) δ(x+ y) = δ(x) + δ(y) + xp+yp−(x+y)p

p
for all x, y ∈ R.

2. (normalization) δ(0) = δ(1) = 0.

The pair (R, δ) is called a semi-δ-ring. A semi-δ-ring homomorphism from (R, δ) to (R′, δ′) is

a homomorphism f : R→ R′, that satisfies f ◦ δ = δ′ ◦ f .

Remark 4.9. 1. The expression xp+yp−(x+y)p

p
is well defined even when R is p-torsion, as it

is actually a polynomial with integer coefficients.

Definition 4.10. Let R be a commutative ring. Let φ0 : Z → R be the unique ring homomor-

phism and let SR be the set of primes p, such that φ0(p) ∈ R×. We denote

QR = Z[S−1
R ] ⊆ Q

and φ : QR → R the unique extension of φ0. We call an element x ∈ R rational if it is in the

image of φ. By Example 4.7, (QR, δ̄) is a semi-δ-ring.

Thoughwe do not require the derivation δ in a semi-δ-ring to bemultiplicative, the following

lemma plays a similar role to the ”multiplication formula” for the Fermat quotient. See [CSY22,

Lemma 4.1.9].

Lemma 4.11. Let (R, δ) be a semi-δ-ring and let δ̄ denote the Fermat quotient on QR. For all

t ∈ QR and x ∈ R, we have

δ(tx) = tδ(x) + δ̄(t)xp.

When R is p-local, Lemma 4.11 has the following pleasant consequence. The proofs are

left to readers as exercises, or see [CSY22, Proposition 4.1.10, Proposition 4.1.11].
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Proposition 4.12. Let (R, δ) be a p-local semi-δ-ring. If x ∈ R is torsion, then x is nilpotent.

Hint. Compare to the explanation below Example 4.7.

Proposition 4.13. Let (R, δ) be a non-zero p-local semi-δ-ring. The map φ : QR → R is an

injective semi-δ-ring homomorphism. In particular, δ̄ is the unique additive p-derivation on

QR.

Hint. Apply Lemma 4.11 to x = 1.

4.3 The Alpha operation

In this subsection, we introduce an additive operationα : RC → RC for a stablem-semiadditively

symmetric monoidal∞-category C such that |A o Cp| = α(|A|), 1 ≤ m ≤ ∞. In particular,

α(0) = 0 and α(1) = |BCp|, so δ : RC → RC, x 7→ |BCp|x− α(x) is an additive p-derivation,

making (RC, δ) a semi-δ-ring.

Throughout the section we denote

pt
e−→ BCp

r−→ pt .

We first drop out the assumption C being stable, so that R = HomhC(X,Y ) only forms

a commutative rig for X ∈ coCAlg(C) and Y ∈ CAlg(C). The commutative coalgebra and

commutative algebra structures, on X and Y respectively, provide symmetric comultiplication

and multiplication maps:

t̄X : X → (X⊗p)hCp = r∗Θ
p(X)

m̄Y : r!Θ
p(Y ) = (Y p)hCp → Y.

Definition 4.14. Let C be a 1-semiadditively symmetric monoidal∞-category and let

X ∈ coCAlg(C), Y ∈ CAlg(C).

1. Given g : Θp(X) → Θp(Y ), we define ᾱ(g) : X → Y to be either of the compositions
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in the commutative diagram

X r∗Θ
p(X) r!Θ

p(X)

r∗Θ
p(Y ) r!Θ

p(Y ) Y

t̄X Nm−1
r

g g

Nm−1
r m̄Y

2. Given f : X → Y , we define α(f) = ᾱ(Θp(f)).

Lemma4.15. Let ᾱ : π0 MapFun(BCp,C)(Θ
pX,ΘpY )→ π0 MapC(X,Y ) andα : π0 MapC(X,Y )→

π0 MapC(X,Y ) as in Definition 4.14.

1. The map ᾱ is additive, since so is r∗.

2. Given maps Y → Y ′ andX ′ → X of commutative algebras and coalgebras respectively,

for every map f : X → Y , we have

α(g ◦ f ◦ h) = g ◦ α(f) ◦ h ∈ HomhC(X
′, Y ′).

3. Let D be a 1-semiadditively symmetric monoidal ∞-category and F : C → D a 1-

semiadditive symmetric monoidal functor. The induced map of commutative rigs

HomhC(X,Y )→ HomhD(FX,FY )

commutes with the operation α.

Our next goal is to discuss the ”addition formula” on α. We first introduce a technical

lemma:

Lemma4.16. Let C be a 1-semiadditively symmetricmonoidal∞-category and letX ∈ coCAlg(C), Y ∈

CAlg(C). For every map

h : X⊗p = e∗Θp(X)→ e∗Θp(Y ) = Y ⊗p,

the map ᾱ(
∫
e
h) is homotopic to the composition

X
e∗tX−−→ X⊗p h−→ Y ⊗p e∗mY−−−→ Y.
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Using this lemma, we are able to deduce the desired ”addition formula”:

Theorem 4.17. Let C be a 1-semiadditive symmetric monoidal∞-category and let

X ∈ coCAlg(C), Y ∈ CAlg(C).

For every f, g : X → Y , we have

α(f + g) = α(f) + α(g) +
(f + g)p − f p − gp

p
∈ HomhC(X,Y ).

Proof. First we recall that ᾱ is additive, so we have

α(f + g) = ᾱ(Θp(f + g))

= ᾱ(Θp(f) + Θp(g) +
∑
w̄∈S̄

( ∫
e

{w(f, g)}
)

= ᾱ(Θp(f)) + ᾱ(Θp(g)) +
∑
w̄∈S̄

ᾱ(

∫
e

{w(f, g)}).

By Lemma 4.16, the map ᾱ(
∫
e
{w(f, g)}) is homotopic to the composition

X
e∗tX−−→ X⊗p w(f,g)−−−→ Y ⊗p e∗mY−−−→ Y.

This is by definition fwxgwy , where wx and wy are the number of x-s and y-s in w respectively

and this completes the proof.

Then we apply the above theory to the case where X = Y = 1 is the unit of a symmet-

ric monoidal ∞-category C. Recall that 1 is canonically both a commutative algebra and a

commutative coalgebra, and we denoteRC = HomhC(1,1).

Note that the symmetric monoidal structure on CAlg(C) is cocartesian, as tensor products

there coincide with coproducts. Thus, any group action on 1 as an initial object in CAlg(C)

must be trivial. Also, the forgetful functor U : CAlg(C) → C is symmetric monoidal, so the

Σp-action on 1 in C is induced by that in CAlg(C), which must also be trivial. In other words,

Θp(1) = r∗1.
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Now, look at the ”symmetric” multiplication and comultiplication maps

t̄1 : 1→ r∗Θ
p(1), m̄1 : r!Θ

p(1)→ 1.

It is natural (why not?) to guess these maps are (equivalent to) the unit map and the counit map

u∗ : 1→ r∗r
∗1, c! : r!r

∗1→ 1

respectively. Indeed, it is the case, see [CSY22, Lemma 4.2.9, Lemma 4.2.10].

Consequently, we may describe the effect of α on any element of RC using the integral

operation:

Proposition 4.18. Let (C,⊗,1) be a 1-semiadditively symmetric monoidal ∞-category. For

every f ∈ RC , we have

α(f) =

∫
BCp

Θp(f) ∈ RC.

In particular, we get an explicit formula for those maps of the form α(|A|):

Theorem4.19 ([CSY22, 4.2.12]). Let C be anm-semiadditively symmetricmonoidal∞-category

for m ≥ 1. For every m-finite anima A, we have

α(|A|) = |A o Cp|.

In particular, |BCp| = α(| pt |) = 1 ∈ RC.

Proof. Note that this is an application of theHigher Fubini’s Theorem(Proposition 2.12). Namely,

consider the maps

q : A→ pt, r : BCp → pt,

we have

α(|A|) = ᾱ(Θp(|A|)) =
∫
r

Θp(

∫
q

Id1) =

∫
r

∫
q≀Cp

Id1 =

∫
r(q≀Cp)

Id1 = |A o Cp|.

The last claim follows immediately.

Finally, we define an additive p-derivation on the commutative ring RC for any stable 1-

semiadditively symmetric monoidal∞-category C.
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Definition 4.20. Let C be a stable 1-semiadditively symmetric monoidal∞-category. We define

an operation δ : RC →RC by

δ(f) = |BCp|(f)− α(f).

Proposition 4.21. The operation δ in Definition 4.20 is an additive p-derivation onRC .

Proof. The additivity follows from Theorem 4.17 and the normalization follows from Theo-

rem 4.19.

4.4 Application to M̂odEn

In this subsection, we are back to our original goal for higher semi-additivity of SpT (n). Recall

that we have reduced the problem to finding anm-finite animaAwhose cardinality |A| ∈ Zp ⊂

π0En is invertible, or equivalently, has p-adic valuation 0.

Proposition 4.22. Let 1 ≤ m < ∞ and let h : π0ST (n) → π0En be the ring homomorphism

induced by Ên[−] : SpT (n) → M̂odEn as in Corollary 3.10. If SpT (n) ism-semiadditive (which

implies that so is En), then there exists an m-good anima A, such that |A| is invertible as an

element in Zp ⊂ Zp[[v1, . . . , vn−1]] = π0En.

Proof. We start with BmCp. By the computation in appendix A, we have |BmCp| = p(
n−1
m
)

whenever it is well-defined. In particular, it is rational and has p-adic valuation 0 ≤ vp(|BmCp|) <

∞. It therefore suffices to show that given anm-good animaAwith 0 < v(A) = vp(|A|) <∞,

there exists anotherm-good anima A′ such that v(A′) = v(A)− 1. We compute

δ(|A|) = |BCp||A| − α(|A|) = |BCp||A| − |A o Cp|,

then

|A o Cp| = |BCp||A| − δ(|A|).

Note that the only non-invertible prime number in π0En is p, so v(A) ≤ vp(|BCp||A|). More-

over, vp(δ(|A|)) = v(A) − 1 by the fact that |A| ∈ Zp, where by Proposition 4.13 the re-

striction of δ coincides with the Fermat quotient as stated in Example 4.7. It follows that

v(A o Cp) = v(A)− 1. Clearly, A o Cp ism-good, and this completes the proof.
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The above proof justifies that if SpT (n) ism-semiadditive, then SpT (n) is (m+1)-semiadditive.

Finally, we have

Theorem 4.23 ([CSY22, Theorem 5.3.1]). For all n ≥ 0, the∞-categories SpT (n) and M̂odEn

are∞-semiadditive.

Applying Lemma 2.19 to LK(n) : SpT (n) → SpK(n), we recover the result of [HL13].

Corollary 4.24. For all 0 ⩽ n <∞, SpK(n) is∞-semiadditive.

SupposeR is a weak ring. It is natural to ask about the semiadditivity of SpR. Wewill finally

state (without proof) another result in [CSY22], giving a complete answer to this question and

showing the relationship between SpR, SpK(n) and SpT (n).

Theorem 4.25 ([CSY22, cf. Theorem 5.4.7]). Let R be a nonzero p-local weak ring. The

following are equivalent:

1. There exists a (necessarily unique) integer n ⩾ 0, such that SpK(n) ⊂ SpR ⊂ SpT (n).

2. Either SpR = SpHQ, or Ω∞ : SpR → An∗ admits a retract.

3. SpR is∞-semiadditive.

4. SpR is 1-semiadditive.

5. supp(R) = {n} for some 0 ⩽ n <∞.

A Computing |BmCp|M̂odEn

In this appendix, we compute |BmCp|M̂odEn
indirectly via the dimension of BmCp in M̂odEn ,

which can be deduced from a result of Ravenel-Wilson onK(n)∗(B
mCp).

Let us define the notion of dimension of dualizable objects and compute dimM̂odEn
(BmCp)

firstly.

Definition A.1. Suppose (C,⊗,1C) is a symmetric monoidal∞-category andX ∈ C is dualiz-

able. The dimension of X in C dimC(X) ∈ EndC(1C) is the following composition

1C
coev−−→ X ⊗X∨ swap−−→ X∨ ⊗X

ev−→ 1C .
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Let q : A → pt be the terminal map in An. We say that A is dualizable in C if q!q∗ 1C is

dualizable in C and we denote

dimC(A) := dimC(q!q
∗ 1C).

Lemma A.2. Let n ⩾ 0 and X ∈ An. If

dimFp(K(n)0(X)) = d <∞ and K(n)1(X) = 0,

then X is dualizable in M̂odEn and

dimM̂odEn
(X) = d.

Proof. Let q : X → pt be the terminal map. The lemma follows from [HL13, Proposition

3.4.3(1)], which says that there is an isomorphism in M̂odEn

q!q
∗ 1M̂odEn

' q!q
∗En ' LK(n)(En ⊗ Σ∞

+X) ' Ed
n.

Corollary A.3. For all m ∈ Z⩾0, we have

dimM̂odEn
(BmCp) = p(

n
m
).

Proof. By [RW80, Theorem 9.2], we have

dimFp K(n)0(B
mCp) = p(

n
m
) and K(n)1(B

mCp) = 0.

Hence, the result follows from the above lemma.

Next, we have to deduce the relationship between the dimension and the cardinality of m-

finite anima. Note that both of them are preserved by colimit-preserving symmetric monoidal

functors. It turns out that the situation in m-semiadditively symmetric monoidal∞-categories

can be reduced to a universal and familiar category.

Let Sm
m be the∞-category of spans of m-finite anima. Roughly speaking,

• The objects of Sm
m arem-finite anima.

28



• A morphism from A to B is a span A← E → B, where E is alsom-finite.

• Composition, up to homotopy, is given by pullback of spans.

By [Har20, Section 2.2], Sm
m can be promoted to a symmetric monoidal∞-category by taking

the Cartesian product of anima levelwisely.

Theorem A.4 (Harpaz, [Har20, Corollary 5.8]). We have that the ∞-category Sm
m is initial

amongm-semiadditively symmetric monoidal∞-category, i.e., for anym-semiadditively sym-

metric monoidal ∞-category C, up to homotopy, there exists a unique m-colimit preserving

symmetric monoidal functor FC : Sm
m → C, whose underlying functor is given by A 7→ q!q

∗ 1C ,

where q : A→ pt is the terminal map.

Thus, by Proposition 2.13(2),

dimC(A) = FC(dimSm
m
(A)) and |B|1C = FC(|B|pt)

for anym-finite anima A and B.

The relationship is easy in Sm
m .

Proposition A.5. Every m-finite anima A is self-dual in Sm
m and satisfies

dimSm
m
(A) ' (pt← LA→ pt) ' |LA|,

where LA is the free loop space.

Proof. It is straight forward to check that

ev : A× A
∆←− A→ pt and coev : pt← A

∆−→ A× A

satisfy the triangle identity, so they exhibit A as a self-dual object in Sm
m . Moreover, note that

ev ◦ swap ' ev. Thus, dim(A) ' ev ◦ coev. The first equivalence comes from the following

pullback square in An and the composition rule in Sm
m .

LA A

A A× A

⌟
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For the second equivalence, for any m-finite anima B, |B| in Sm
m is computed by By [Har20,

Proposition 2.9],m-finite colimits in Sm
m can be computed as inAn, so we have colimB pt ' B.

Thus, |B| ' (pt← B → pt). Taking B = LA finishes the proof.

Lemma A.6. If A ' MapAn∗(B,C) for some connected B ∈ An∗ and arbitrary C ∈ An∗,

then LA ' A× ΩA.

Proof. We have

LA ' MapAn(S
1,MapAn∗(B,C))

' MapAn∗(S
1
+,MapAn∗(B,C))

' MapAn∗(S
1
+ ∧B,C)

Since B is connected, S1
+ ∧ B is connected. Thus, we can choose a different base-point.

LA ' MapAn∗(S
1
+ ∧B,C)

' MapAn∗((S
0 ∨ S1) ∧ B,C)

' A× ΩA

The following lemma says that the cardinality is compatible with pullback.

Lemma A.7 ([CSY22, Corollary 3.1.14]). Let C be an ∞-category and q1 : A1 → B and

q2 : A2 → B be two C-ambidextrous maps. Then for all X ∈ C, we have

|q1 ×B q2|X ' |q2|X ◦ |q1|X .

Assembling the above discussion together, we get the following.

Corollary A.8. Let (C,⊗,1) be an m-semiadditively symmetric monoidal∞-category. Every

m-finite space A is dualizable in C and we have

dimC(A) = |LA|.

In particular, if A is a loop space (e.g. A = BmCp), then

dimC(A) = |A||ΩA|.
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Corollary A.9. For all m ∈ Z⩾0, we have

|BmCp|M̂odEn
= p(

n−1
m
).

Proof. By Corollary A.3 and Corollary A.8 (Note that we already know that M̂odEn is m-

semiadditive when applying this corollary), we have

p(
n
m
) = dimM̂odEn

(BmCp) = |BmCp|M̂odEn
|Bm−1Cp|M̂odEn

for all m ∈ Z⩾0. It is easy to show that |B0Cp| = |Cp| = p. The formula follows from the

formula
(
n
m

)
=

(
n−1
m

)
+
(
n−1
m−1

)
and the fact that π0(En) is torsion-free.
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