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Abstract

Redshift conjecture concerns about how algebraic K-theory interacts with chromatic

homotopy theory. It says that the algebraic K-theory raises the chromatic complexity

by 1. The conjecture for commutative ring spectra has been formulated and solved by

a series of works by Burklund, Clausen, Hahn, Land, Matthew, Meier, Naumann, Noel,

Schlank, Tamme and Yuan. In this note, we introduce and summarize the proof of the

redshift conjecture for commutative ring spectra.
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1 The chromatic height and the redshift conjecture

Throughout, we will fix a prime number p implicitly.

It is well-known in chromatic homotopy theory that for a p-local finite spectrum V , if

V ⊗ K(n) = 0, then V ⊗ K(n − 1) = 0, i.e., the chromatic support of V is a ray to the

infinity.

In contrast, the chromatic support of E∞-ring spectra is an interval or Z⩾ ∪ {∞}. This

is due to the following theorem of Hahn.

Theorem 1.1 ([Hah22]). Suppose R ∈ CAlg(Sp). If R⊗K(n) = 0, then R⊗K(n+1) = 0.

The theorem inspires the following definition.

Definition 1.2. For R ∈ CAlg(Sp), define the chromatic height of R to be

height(R) := inf{n ⩾ −1: K(n + 1) ⊗ R = 0}. ⌟

Suppose R is an ordinary commutative ring. Since R is bounded above, height(R) = 0

(cf. [LMMT24, Lemma 2.2(ii)]).

Theorem 1.3 ([Mit90]). For all n ⩾ 2, LK(n)K(R) = 0.

Thus, height(K(R)) contains no chromatic information of height ⩾ 2. Going from ordi-

nary rings to ring spectra, together with other results, Ausoni-Rognes conjectured that similar

phenomenon should happen for higher chromatic heights, i.e., algebraic K-theory increases

the chromatic complexity by 1 ([AR02], [AR08]). This is known as the redshift conjecture.

Restricted to commutative ring spectra, we have a well-behaved notion of the chromatic

complexity, which is the chromatic height defined above. In this case, the redshift conjecture

can be formulated as the following.

Conjecture (Redshift). For 0 6= R ∈ CAlg(Sp),

height(K(R)) = height(R) + 1.

The proof of the redshift conjecture is a joint work of [BSY22], [CMNN22], [LMMT24]

and [Yua21]. We will summarize the proof of this conjecture in this note. To be precise, we

prove that height(K(R)) ⩽ height(R) + 1 in Section 3 and height(K(R)) ⩾ height(R) + 1

in Section 4 and Section 6.
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2 Chromatic backgrounds

Definition 2.1. For any n ⩾ 0, a type n-complex V (n) is a pointed finite CW-complex

such that K(i) ⊗ Σ∞V (n) = 0 for all i < n and K(n) ⊗ Σ∞V (n) 6= 0. By [HS98], if n > 0,

then there is a self map vn : ΣdV (n) → V (n) for some d > 0, which induces an isomorphism

on K(n)-homology and nilpotent maps on K(i)-homology for i 6= n. We call this map a

vn-self map.

Let T (n) := Σ∞V (n)[v−1
n ]. It is well-known by the thick subcategory theorem that the

Bousfield class of T (n) does not depend on the choice of (V (n), vn) (cf. [LMMT24, Lemma

2.2(vii)]). ⌟

Theorem 2.2. Suppose R ∈ AlgE1(Sp). Then R is K(n)-acyclic if and only if R is T (n)-

acyclic. In particular, the definition of chromatic height does not matter if we replace T (n)

by K(n).

Proof. If R is T (n)-acyclic, then K(n) ⊗ T (n) ⊗ R = 0. Since K(n) is a field spectrum and

K(n) ⊗ T (n) 6= 0, K(n) ⊗ R = 0.

For the converse, we may assume that T (n) is an E1-ring spectrum by replacing V (n)

by W (n) := V (n) ⊗ DV (n) ' End(Σ∞V (n)). The self-map vn defines a self-map wn on

W (n). By [HS98, Theorem 11], a power of wn is in the center of π∗(W (n)), so Wn[w−1
n ] can

be promoted to an E1-ring spectrum.

If R is K(n)-acyclic, then T (n)⊗R is K(m)-acyclic for all m ∈ Z⩾0 ∪{∞} since T (n) is

K(m) acyclic for m ∈ (Z⩾0 −{n})∪{∞}. By [HS98, Theorem 3], the unit map of T (n)⊗R

is nilpotent, so T (n) ⊗ R = 0.

Definition 2.3. We denote the Bousfield localization with respect to T (0) ⊕ · · · ⊕ T (n) by

Lp,f
n . Let C>n be the thick subcategory of Spω

(p) consisting of finite spectra of type greater

than n. ⌟

Lemma 2.4 (cf. [LMMT24, Lemma 2.6]). The category of Lp,f
n -acyclic spectra is Ind(C>n).

Consequently, Lp,f
n is smashing.

Lemma 2.5. For integers 0 ⩽ m < n and a spectrum X, there is a pullback diagram

Lp,f
n X LT (m+1)⊕···⊕T (n)X

Lp,f
m X Lp,f

m LT (m+1)⊕···⊕T (n)X
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Since Lp,f
m is smashing, the lemma is a direct corollary of the following lemma.

Lemma 2.6. Suppose E, F ∈ Sp and LE preserves F -acyclic spectra, there is a pullback

diagram

LE⊕F X LF X

LEX LELF X

Proof. Suppose X̃ is the pullback of this diagram without the left-top corner. It suffices to

show that X̃ is (E ⊕ F )-local and has the same (E ⊕ F )-homology with X.

Pick any Y ∈ Sp that is (E ⊕ F )-acyclic, Y is both E-acyclic and F -acyclic, so

Map(Y, LEX) = Map(Y, LF X) = Map(Y, LELF X) = 0. By the universal property of

pullback, every map Y → X̃ corresponds to a commutative diagram

Y LF X

LEX LELF X

in which the maps Y → LEX and Y → LF X are nullhomotopic and the homotopy between

the two paths is also trivial due to above vanishing result. Thus, Map(Y, X̃) = 0.

Now we prove that X̃ ⊗(E ⊕F ) ' X ⊗(E ⊕F ). From the pullback square, it is clear that

X̃⊗E ' LEX⊗E ' X⊗E. Since LE preserves F -acyclic spectra, LEX⊗F ' LELF X⊗F

via the canonical map X → LF X. Therefore, X̃ ⊗ F ' LF X ⊗ F ' X ⊗ F .

As an algebraic analog of Lp,f
n := LT (0)⊕···⊕T (n), we have another localization functor

Ln := LK(0)⊕···⊕K(n). By [Rav84, 2.1(d)], K(0)⊕· · ·⊕K(n) is Bousfield equivalent to a ring

spectrum called the Morava E-theory.

Throughout, let k be a perfect field of characteristic p and G0 be a formal group of height

n ⩾ 1 over k. Let Perfk ⊂ CRing be the category of (ordinary) perfect algebras over k and

(−)♯, (−)♭ : CRingk → Perfk be the left and right adjoint of the inclusion functor respectively,

i.e., the colimit and limit perfection. For any even periodic complex orientable ring spectrum

R, let m be the nth Landweber ideal in π0R, generated by any choice of p, v1, v2, · · · , vn−1.

Theorem 2.7 ([Lur18, Theorem 5.0.2, 5.1.5]). There is a fully faithful functor

E(−) : Perfk → CAlg(SpK(n))
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such that for any even periodic complex orientable R ∈ CAlg(SpK(n)), Map(E(A), R) is

canonically isomorphic to the set of pairs (i, α), where i : A → π0(R)/m is a ring homo-

morphism and α : i∗(G0)A
∼= (GR)π0(R)/m is an isomorphism between formal groups over

π0(R)/m, where GR is the formal group associated to R.

Moreover, π∗(E(A)) ∼= W (A)Ju0, · · · , un−1K[u±1], where |u| = −2 and vi can be chosen

as uiu
−pi+1.

Remark 2.8. By [Lur10, Lecture 23, Proposition 2], the Bousfield class of E(A) is the same

with K(0) ⊕ · · · ⊕ K(n), which is independent on A. ⌟

For any R ∈ CAlg∧
E(k) := CAlgE(k)(SpT (n)), let R♭ := (π0R/m)♭.

Theorem 2.9 ([BSY22, Theorem 2.38]). There is an adjunction

E(−) : Perfk ⇄ CAlg∧
E(k) : (−)♭.

Remark 2.10. Let us give a sketch proof of Theorem 1.1 here.

Firstly, let En+1 be some Morava E-theory En+1 of height n+1. Since K(n+1)⊗En+1 6= 0

and K(n+1) is a field spectrum, R is K(n+1)-acyclic if and only if LK(n+1)(R⊗En+1) = 0.

Since K(n) ⊗ LK(n+1)(R ⊗ En+1) is a module over K(n) ⊗ R, LK(n+1)(R ⊗ En+1) is K(n)-

acyclic if R⊗K(n) = 0. Therefore, we may assume that R is a K(n+1)-local En+1-algebra.

By the Theorem 2.2, R ⊗ K(n) = 0 if and only if R ⊗ T (n) = 0, so un is nilpotent

in R/(p, u1, · · · , un−1), say uk
n = 0. Note that un comes from π0(En+1). Hahn proved

that the ring π0(En+1)/(p, u1, · · · , un−1) is a DVR and the weight p total power operation

associated to the group Cp reduces the valuation. Making use of the power operation, Hahn

constructed an element in π0(En+1)/(p, u1, · · · , un−1) that has smaller valuation than uk
n and

is also zero in R/(p, u1, · · · , un−1). Iterating this process, we can show that there is a unit in

π0(En+1/(p, u1, · · · , un−1)) mapping to 0 in R/(p, u1, · · · , un−1), so R/(p, u1, · · · , un−1) =

0. Since R is K(n + 1)-local, R = 0. ⌟

3 Purity in chromatic algebraic K-theory

In this section, we prove that algebraic K-theory raises the chromatic height no more than 1.

Firstly, we have the following witness of this principle.
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Theorem 3.1 ([CMNN22, Theorem 4.10]). For n ⩾ 2,

LT (n)K(Lp,f
n−2 S) = 0.

The above theorem shows that LT (n)K vanishes on elements in AlgE1(SpT (0)⊕···T (n−2))

since every object in this category can be promoted to an algebra over Lp,f
n−2 S. The purity

theorem for chromatic algebraic K-theory says that LT (n)K only cares about chromatic heights

(n − 1) and n.

Theorem 3.2 (Purity theorem). Suppose R ∈ AlgE1(Sp). For n ⩾ 1, the canonical map

R → LT (n−1)⊕T (n)R induces an equivalence on LT (n)K(−).

Remark 3.3. This does not imply that LT (n)K(LT (n+1) S) = 0. For example, by Theorem 4.1,

K(En+1) has height (n+2) for any Morava E-theory of height (n+1), so LT (n)K(En+1) 6= 0

by Theorem 1.1. ⌟

Thanks to this profound result, we can easily show that algebraic K-theory raises the

chromatic height no more than 1.

Proposition 3.4. For R ∈ AlgE1(Sp),

height(K(R)) ⩽ height(R) + 1.

Proof. Suppose height(R) = n, so LT (n+1)⊕T (n+2)R = 0. By Theorem 3.2,

LT (n+2)K(R) ' LT (n+2)K(LT (n+1)⊕T (n+2)R) = 0.

Now we want to give a sketch proof for the purity theorem based on Theorem 3.1. Recall

from Lemma 2.5 that we can deduce information about LT (n−1)⊕T (n) from Lp,f
n−2 and Lp,f

n .

Theorem 3.5 ([LMMT24, Theorem A(1)]). Suppose R ∈ AlgE1(Sp). For n ⩾ 1, the

canonical map R → Lp,f
n R induces an equivalence on T (n)-local K-theory.

Since algebraic K-theory is a localizing invariant, the theorem is equivalent to say that

the kernel of Perf(R) → Perf(Lp,f
n R) vanishes after applying LT (n)K. This is done by the

following two lemmas.
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Lemma 3.6. For any R ∈ AlgE1(Sp), there is a localizing sequence

C>n ⊗ Perf(R) → Perf(R) → Perf(Lp,f
n R).

Moreover, for any X ∈ C>n ⊗ Perf(R), Lp,f
n map(X, X) = 0.

Proof. By [Nee92, Theorem 2.1] and Lemma 2.4, we have the following fiber sequence in

Catperf
∞

C>n → Perf(S) → Perf(Lp,f
n S).

Tensoring the above sequence with Perf(R), we get the required sequence using the fact that

Lp,f
n is smashing.

For any X ∈ C>n ⊗ Perf(R), X is generated by elements of the form V ⊗ R for some

V ∈ C>n. Note that map(V ⊗ R, V ⊗ R) ' DV ⊗ V ⊗ R is still Lp,f
n -acyclic. Thus,

map(X, X) is also Lp,f
n -acyclic.

Lemma 3.7 ([LMMT24, Proposition 3.6]). Suppose C ∈ Catperf
∞ and Lp,f

n Map(X, X) = 0

for all X ∈ C. Then LT (i)K(C) = 0 for all 1 ⩽ i ⩽ n.

Sketch proof. Since vn-self map is in positive degree for n > 0, the vn-periodic homotopy

groups vanish for bounded above spectra. Thus, T (i)-equivalence can be verified after trun-

cation for i > 0. From this and the plus construction Σ∞ BGL(R) '−→ Σ∞Ω∞τ⩾1K(R),

we may deduce that Theorem 3.5 is true for highly connected R ([LMMT24, Proposition

3.1]). Furthermore, by some arguments on localizing invariants, we can show that for any

connective Lp,f
n -acyclic ring spectrum R, LT (i)K(R) ' LT (i)K(π0R) and LT (i)K(Z/pk) = 0

for k ⩾ 0([LMMT24, Proposition 3.4 and Corollary 3.5]).

Since algebraic K-theory commutes with filtered colimits, we may assume that C is gen-

erated under finite direct sums and retracts by one object X. Let hom(X, X) denotes

the connective ring spectrum corresponding to Map(X, X), which can be promoted to a

group-like E∞-anima since C is additive. By the additive version of the Schwede-Shipley

theorem, C ' Projω(hom(X, X)). Let Kadd be the group-completion K-theory. Then

Kadd(C) ' τ⩾0K(hom(X, X)) is T (i)-acyclic by the above paragraph and the assumption

that hom(X, X) is Lp,f
n -acyclic (in particular, it is p-power torsion).

Suppose S•C ∈ Fun(∆op, Catperf
∞ ) is the Waldhausen S•-construction. There is an equiv-
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alence of connective spectra

(τ⩾0K(C))[1] ' |Kadd(S•C)|.

By the above discussion and the explicit construction of the Waldhausen S•-construction, the

right-hand side is T (i)-acyclic, so is K(C).

Now we can finish the proof of the purity theorem.

Proof of Theorem 3.2. By Lemma 2.5, we have the following pullback diagram.

Lp,f
n R LT (n−1)⊕T (n)R

Lp,f
n−2R Lp,f

n−2LT (n−1)⊕T (n)R

By [LT19, Theorem A] and the fact that Lp,f
n−2 is smashing, the diagram is still a pullback

diagram after applying LT (n)K. Note that the bottom row vanishes by Theorem 3.1 after

applying LT (n)K. Therefore,

LT (n)K(R) '−→ LT (n)K(Lp,f
n R) '−→ LT (n)K(LT (n−1)⊕T (n)R),

where the first map is induced by the canonical map and is an equivalence by Theorem 3.5.

4 Redshift for Morava E-theories

In his paper [Yua21], Yuan proved the following interesting result, producing an example of

redshift for Morava E-theories.

Theorem 4.1. We have that LT (n+1)K(E(k)) 6= 0.

Recall firstly that we have the following blueshift result says that (−)tCp reduces the

chromatic height by 1.

Theorem 4.2 (Chromatic blueshift, [Kuh04]). Let X ∈ SpBCp

T (n). Then LT (n)X
tCp = 0.

The idea of proving Theorem 4.1 is that although (−)tCp lower the chromatic height by 1,

taking (−)hS1/Cp with respect to the residual S1/Cp-action on (−)tCp gives back the chromatic

height by the Tate orbit lemma. The latter object is related to the algebraic K-theory via the

Dennis trace map to THH. The following example illustrates part of the idea.
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Example 4.3. Suppose X = Z. Then π∗ZtCp ∼= Fp((T )), where |T | = −2. Since v0 = p

vanishes in ZtCp , height(ZtCp) = −1.

However, if we consider the residual Cp2/Cp-action on ZtCp and take the fixed point, we

get

π∗(ZtCp)hCp2 /Cp ∼= Z/p2((T )), |T | = −2,

by comparing the homotopy fixed point spectral sequence associated to it with the one asso-

ciated to (ZhCp)hCp2 /Cp ' ZhCp2 . Similarly, if we add more p-division values into it, we will

get more powers of p:

π∗(ZtCp)hC
pk /Cp ∼= Z/pk((T )), |T | = −2,

π∗(ZtCp)hS1/Cp ∼= Zp((T )), |T | = −2. ⌟

This phenomenon is a special case of the following Tate orbit lemma.

Lemma 4.4 (Tate orbit lemma, [NS18, Lemma II.4.2]). Suppose X is a bounded below

spectrum with S1-action. The map X tS1 → (X tCp)hS1/Cp exhibits the target as the p-

completion of the source.

Therefore, it is natural to prove the following result.

Proposition 4.5. Let R be a homotopy commutative ring spectrum and n ⩾ 1 such that

LT (n)R 6= 0. Then LT (n)R
tS1 6= 0.

Proof. If R is complex oriented, then

π∗R
hS1 ∼= R∗(BS1) ∼= R∗JT K, |T | = −2

and RtS1 ' RhS1 [T −1], which contains R itself as a direct summand as an R-module. Hence,

LT (n)R
tS1 6= 0.

Note that K(n) is complex oriented, so is R ⊗ K(n). By Theorem 2.2, we have that

LT (n)R 6= 0 if and only if LK(n)R 6= 0, if and only if LK(n)(R ⊗ K(n)) 6= 0, if and only if

LT (n)(R ⊗ K(n)) 6= 0. By the above discussion, LT (n)(R ⊗ K(n))tS1 6= 0. Since there is a

ring map R → R ⊗ K(n), LT (n)R
tS1 6= 0.

It follows from the Tate orbit lemma that LT (n)(RtCp)hS1/Cp 6= 0 for bounded below R.

Now we can prove that the redshift phenomenon happens for RtCp .
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Theorem 4.6. Suppose R ∈ CAlg(Sp), n ⩾ 1 and LT (n)R 6= 0. Then LT (n)K(RtCp) 6= 0.

Proof. Since the Tate orbit lemma only works for bounded below spectra, we need to pass

to connective case at first. Let r → R be the connective cover of R. We want to show

that LT (i)r
tCp ' LT (i)R

tCp for all i ⩾ 0. It suffices to show that LT (i)(τ⩽−1R)tCp = 0. Note

that LT (i) and (−)tCp commutes with the colimit of the Whitehead tower (cf. [NS18, Lemma

I.2.6]). Thus, we are reduced to show that LT (i)M
tCp for any M ∈ Ab. Indeed, M tCp ∈ ModZ

is p-torsion, so it is T (i)-acyclic.

Consider the residual S1 ' S1/Cp-action on the target of the identity map rtCp → rtCp .

This map extends uniquely to an S1-equivariant map THH(rtCp) → rtCp . Taking the S1-fixed

points and composing it with the S1-invariant Dennis trace map, we get a map of E∞-rings

K(rtCp) → THH(rtCp)hS1 → (rtCp)hS1/Cp .

The codomain is not T (n)-acyclic by the previous proposition, so LT (n)K(rtCp) 6= 0. Finally,

by the purity theorem and the fact that LT (n−1)⊕T (n)r
tCp ' LT (n−1)⊕T (n)R

tCp , we get that

LT (n)K(RtCp) 6= 0.

Remark 4.7. The theorem also shows that the purity theorem is kind of optimal, i.e., LT (n)-

localization does not induce an equivalence on LT (n)K. Suppose R ∈ CAlg(Sp) is of height

n. Then LT (n)R
tCp = 0 by Kuhn’s blueshift theorem, while LT (n)K(RtCp) 6= 0 by the above

theorem.

In fact, we can show that LT (n−1)-localization also does not induce an equivalence on

LT (n)K as well, so the purity theorem is really optimal ([LMMT24, Remark 3.11]). ⌟

Naively, in order to prove Theorem 4.1, we want to construct an E∞-map E(k) → E
tCp

n+1

for some Morava E-theory of height (n + 1), which corresponds to a deformation of G0 to

π0(EtCp

n+1) by Theorem 2.7. However, π0(EtCp

n+1) ∼= π0(En+1)((T ))/[p](T ) is a quotient ring of

Laurent series and the corresponding formal group law is complicated ([AMS98]).

A remedy for this situation is that although π0(EtCp

n+1) itself is complicated, we can zoom

into a localization of it that is quite easy to handle and is also non-vanishing after applying

LT (n)K. In particular, if the residue field of the localization is separably closed, all formal

groups laws of the same height are isomorphic by Lazard’s theorem, so it is easy to construct

a deformation. This is done by the following lemma.
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Lemma 4.8 ([Yua21, Lemma 4.5]). Suppose R ∈ CAlg(Sp) and LT (n)K(R) 6= 0. Then

there exists a prime ideal p ⊂ π0(R) such that LT (n)K(Rsh
p ) 6= 0, where Rsh

p is the strict

henselization of R at p. In particular, π0(Rsh
p ) is a local ring with separably closed residue

field.

For the detailed proof of Theorem 4.1, see [Yua21, Theorem A].

5 Coverings by Morava E-theories

Inspired by the idea of the proof of Theorem 4.1, in order to prove the redshift conjecture for

arbitrary R ∈ CAlg(Sp), we want to create a ring map R → En for some Morava E-theory

En. This is done by the following main result of [BSY22].

Theorem 5.1 ([BSY22, Theorem 5.1]). Suppose R ∈ CAlg(SpT (n)). Then there is an

A ∈ Perfk of Krull dimension 0 and a nilpotence detecting map R → E(A) in CAlg(SpT (n)).

To prove the theorem, we first introduce what does ‘nilpotence detecting’ mean.

Definition 5.2. A locally rigid category is a compactly generated symmetric monoidal

stable category such that every compact object is dualizable. Let Prrig ⊂ CAlg(Prst) be the

(non-full) subcategory of locally rigid categories with compact preserving functors. ⌟

Definition 5.3. Let C ∈ Prrig and f : R → X ∈ CAlg(C). We say that f detects nilpo-

tence if for any C ∈ ModR(C)ω and g : C → D ∈ ModR(C), g is smash nilpotent if and

only if g is smash nilpotent after base-changing to X, i.e., g ⊗ X is smash nilpotent in

ModX(C). ⌟

The proof relies on a technique called the ‘small object argument’.

Definition 5.4. Let C be an ∞-category and S be a collection of morphisms in C. We say

that S is weakly saturated if

1. S is closed under cobase-change. That is, for any pushout square

C R

D X

f f ′

in C such that f ∈ S, we have f ′ ∈ S.

2. S is closed under retracts in C∆1 .
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3. S is closed under transfinite composition. That is, for any ordinal α and functor F : α →

C such that

(a) for any non-zero limit ordinal β < α, the diagram F |β+1 is a colimit diagram, and

(b) for any ordinal β such that β + 1 < α, the map F (β) → F (β + 1) is in S,

we have F (0) → F (β) is in S for all β < α. ⌟

Theorem 5.5 ([BSY22, Theorem 4.36]). Let C ∈ Prrig. The collection of nilpotence detecting

maps is weakly saturated in CAlg(C).

Definition 5.6. Let C be an ∞-category. Let X ∈ C and f : R → C be a morphism in C.

We say that f has the right lifting property with respect to X, denoted as f ⊥ X, if for

any map R → X, we have a lift C → X as in the following diagram.

R X

C

f

⌟

Proposition 5.7 (The small object argument, [Lur11, Proposition 1.4.7], cf. [BSY22, Propo-

sition 4.35]). Let C be a presentable ∞-category, S be a weakly saturated class of morphisms

in C and S0 ⊂ S be a set of morphisms in S. Then for any R ∈ C, there is a morphism

R → XR in C such that

1. R → XR is in S, and

2. for any f ∈ S0, f ⊥ XR.

In order to prove Theorem 5.1, we want to apply the small object argument to produce the

required nilpotence detecting map R → XR. We choose that subset S0 properly such that

the right lifting property ensures that XR in Proposition 5.7(2) ensures that XR is equivalent

to some Morava E-theory of a perfect algebra of Krull dimension 0.

Firstly, the map 1T (n) → E(k) detects nilpotence for any height n Morava E-theory by

[HS98]. Since nilpotence detecting maps are closed under composition by Theorem 5.5, we

may assume that R ∈ CAlg∧
E(k).
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Proposition 5.8 ([BSY22, Proposition 5.9 and 5.11]). Let E(k){zi} be the free commutative

algebra with a class in degree i.

There are the following three nilpotence detecting maps with the corresponding properties

in CAlg∧
E(k):

1. f : E(k[T 1/p∞ ]) → E(k[T ±1/p∞ ])×E(k) such that f ⊥ XR if and only if X♭
R is of Krull

dimension 0, if and only if the counit map E(X♭
R) → XR in Theorem 2.9 is injective

on π0,

2. g : E(k){z0} → E(B) with B := (π0(E(k){z0})/m)♯ such that g ⊥ XR if and only if

the counit map E(X♭
R) → XR is surjective on π0,

3. h : E(k){z1} z1 7→0−−−→ E(k) such that h ⊥ XR if and only if π1XR = 0.

Consequently, let S0 := {f, g, h}. The element XR produced by the small object argument

is isomorphic to E(X♭
R) and X♭

R ∈ Perfk is of Krull dimension 0. Therefore, we have proved

Theorem 5.1.

Remark 5.9. According to [Lur11, Proposition 1.4.7], the map R → XR is a transfinite

pushout of maps in S0. Intuitively, the map A → XA is given by iteratively taking pushouts

with maps in S0 so that it factors through all maps in S0, which is the condition 2 in Propo-

sition 5.7. ⌟

Remark 5.10. Heuristically, we can explain the maps f, g, h as follows.

1. A diagram
E(k[T 1/p∞ ]) XR

E(k[T ±1/p∞ ]) × E(k)

f

may be seen as a diagram

k[T 1/p∞ ] X♭
R

k[T ±1/p∞ ] × k

(T 7→ T, T 7→ 0)

13



inspired by Theorem 2.9. Geometrically, any map k[T 1/p∞ ] → X♭
R factors through

k[T ±1/p∞ ] × k implies that X♭
R is so discrete that it can only be Krull dimension 0.

For the second claim, [BSY22, Corollary 3.51] implies that it suffices to show that

X♭
R → (π0XR)/m is injective. Pick any element x ∈ X♭

R maps to zero in (π0XR)/m,

each component of x is nilpotent. Since X♭
R is a perfect algebra of Krull dimension 0,

x is a unit multiple of an idempotent e. Thus, every component of e is also nilpotent.

Since e is idempotent, e = 0, so x = 0.

2. Due to the definition of E(k){z0}, a map E(k){z0} → XR corresponds to an el-

ement x in π0(XR). By Theorem 2.9, a map E(B) → XR corresponds to a map

(π0(E(k){z0})/m)♯ → X♭
R, which corresponds to a map E(k){z0} → E(X♭

R) by

[BSY22, Theorem 3.4]. Therefore, factoring through g implies that we can lift x to

π0E(X♭
R).

3. Since E(k){z1} is the free commutative algebra over E(k) with a class in degree 1,

factoring through h means that there is no obstruction in degree 1, i.e., π1XR = 0. ⌟

6 Redshift

The following is an easy corollary of Theorem 5.1.

Corollary 6.1. Suppose 0 6= R ∈ CAlg(SpT (n)). There is an algebraically closed field L and

a map R → E(L) in CAlg(SpT (n)).

Having done with this last step, we are finally ready to finish the proof of the redshift

conjecture in the full generality.

Theorem 6.2 (Redshift). For 0 6= R ∈ CAlg(Sp),

height(K(R)) = height(R) + 1.

Proof. Suppose height(R) = n. In light of Proposition 3.4, we only need to show that

LT (n+1)K(R) 6= 0. By Corollary 6.1 and the fact that R has height n, we have a map

LT (n)R → E(L) in CAlg(SpT (n)) for some algebraically closed field L. Therefore, we get a

14



composition of maps in CAlg(SpT (n+1)),

LT (n+1)K(R) → LT (n+1)K(LT (n)R) → LT (n+1)K(E(L)).

By Theorem 4.1, the target is non-trivial. Thus, the domain is non-trivial since the only

algebra over the zero algebra is zero.
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